

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Vibrational Spectra and Normal Coordinate Analysis for (*S*-Glutathionato)(2,2':6',2'-Terpyridine) Platinum(II) Chloride, [Pt(Trpy)Gs]Cl

Wei Huang^a; Chongde Li^b; Jingxi Wang^a; Longgen Zhu^a

^a State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing, People's Republic of China ^b Department of Chemistry, Nanjing University, Nanjing, People's Republic of China

To cite this Article Huang, Wei , Li, Chongde , Wang, Jingxi and Zhu, Longgen(1998) 'Vibrational Spectra and Normal Coordinate Analysis for (*S*-Glutathionato)(2,2':6',2'-Terpyridine) Platinum(II) Chloride, [Pt(Trpy)Gs]Cl', Spectroscopy Letters, 31: 8, 1793 — 1809

To link to this Article: DOI: 10.1080/00387019808007455

URL: <http://dx.doi.org/10.1080/00387019808007455>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

VIBRATIONAL SPECTRA AND NORMAL COORDINATE ANALYSIS FOR (*S*-GLUTATHIONATO) (2,2':6',2"-TERPYRIDINE) PLATINUM(II) CHLORIDE,
[Pt(TRPY)GS]Cl

KEY WORDS: IR spectra, normal coordinate analysis, vibrational assignment

Wei Huang¹, Chongde Li², Jingxi Wang¹, Longgen Zhu*¹

1. State Key Laboratory of Coordination Chemistry,

Coordination Chemistry Institute

2. Department of Chemistry, Nanjing University,

Nanjing, 210093, People's Republic of China

ABSTRACT

The normal coordinate analysis of [Pt(trpy)GS]Cl (where trpy=2,2':6',2"terpyridine, GS=Glutathionato) has been carried out by using Urey-Bradley force field. According to the molecular structure, 222 internal coordinates were established and 162 theoretical vibrational frequencies agree well with the observed values with the average difference 3.44 cm⁻¹ and the maximum deviation 15.1 cm⁻¹.

*Author to whom correspondence should be addressed.

INTRODUCTION

Study of platinum (II) complexes with biological important molecules is of considerable interest because of its carcinostatic effect and toxic side-effect^[1-4]. Platinum (II) is a 'soft' metal that will be suitable for formation of stable complexes with sulfur-containing amino acids, peptides and proteins. The general idea accepted is that the nephrotoxicity caused by Pt (II) complexes is associated with interaction of it with sulfur-containing peptides and proteins. The interaction of glutathione(GSH) with Pt (II) complexes is of interest, because GSH is the most abundant non-protein thiol in cell. Recently, [Pt(trpy)GS]Cl (trpy=terpyridine) was synthesized and its conformation was studied by COSEY and NOSEY ¹H NMR spectra. In this article, we carried out the vibration study for this complex. The normal coordinate analysis (NCA) was made by using a modified Urey-Bradley force field for the first time, inspite of its large number of atoms and low symmetry. The calculations were refined on the basis of the IR, Raman and FIR spectra.

EXPERIMENTAL

The title compounds [Pt(trpy)GS]Cl was synthesized as described in reference^[5]. Its molecular mass was measured by an LCQ electrospray mass spectrometer (ESMS, Finnigan) to be 733 with isotopic peaks separated by 1.0m/z unit; calculated value for [Pt(trpy)GS]⁺ is 733. Infrared and far-infrared spectra were obtained on Nicolet Fourier transform IR 170-SX spectrometer at room temperature. The KBr pellet technique was used for IR in the 400 ~ 4000 cm⁻¹ region as shown in FIG.1, and Nujol mulls technique with polyethylene plates was used for FIR in the 100 ~ 500 cm⁻¹ region, as shown in FIG.2. The FIG.3 shows the Raman spectroscopy in the region 400 ~ 4000 cm⁻¹, which was measured on Spex Raman spectrometer model 1403. The excitation line of the Ar⁺ laser is 4880Å with an output power of 100mw. The sample was pressed as a disk in a stainless steel cell.

NORMAL COORDINATE ANALYSIS

Since the single crystal of [Pt(trpy)GS]Cl has not been obtained yet, we optimized the conformation of [Pt(trpy)GS]⁺ by MM⁺ program of molecular mechanics force field in Hyperchem.

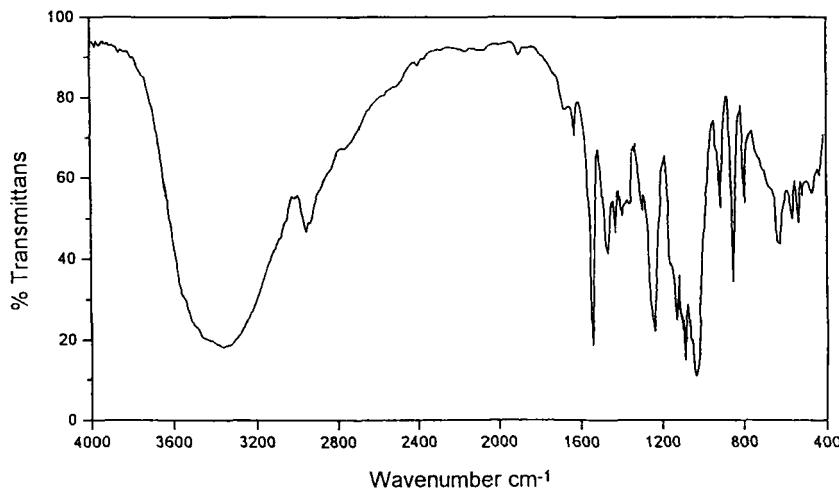


FIG. 1. The IR spectrum of $[\text{Pt}(\text{trpy})\text{GS}]\text{Cl}$.

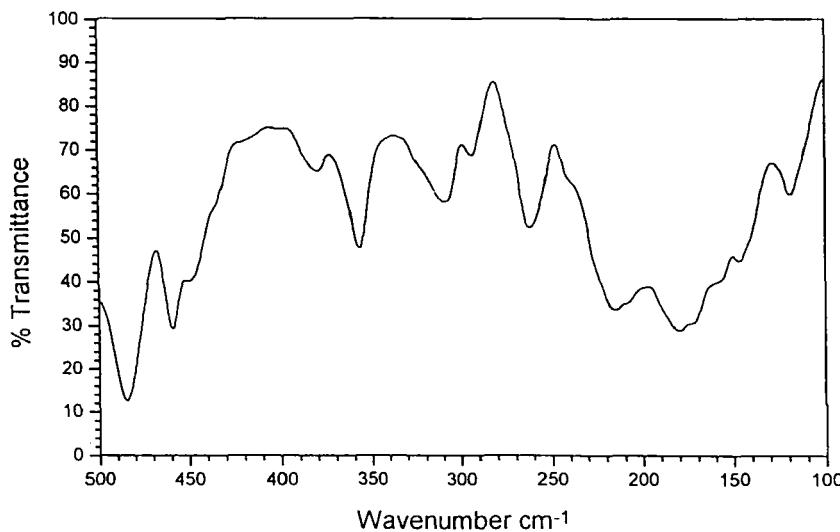


FIG. 2. The far-IR spectrum of $[\text{Pt}(\text{trpy})\text{GS}]\text{Cl}$.

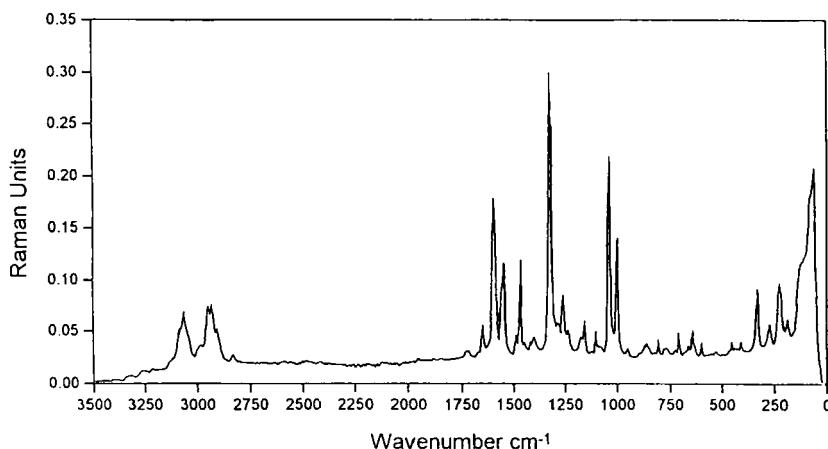


FIG. 3. The Raman spectrum of $[\text{Pt}(\text{trpy})\text{GS}]\text{Cl}$.

The initial structural parameters of GS fragment were set up using data-base in Hyperchem. The structure parameters of Pt(trpy) fragment were taken from $\{[\text{Pt}(\text{trpy})_2\text{Can}](\text{ClO}_4)_3\} \cdot 5.5\text{H}_2\text{O}$ ^[6], and were fixed during optimizing. The optimized bond lengths and bond angles are given in TABLE1. The FIG.4 shows the molecular structure of the title complex. As shown in FIG.4, the molecular has C_1 point group symmetry. The Pt (II) is coordinated by sulphur atom and trpy nearly in a plane. The GS fragment erects up the plane. There is hydrogen bond between the hydrogen atom on N_5 and atom O_6 as well as O_2 , the distance are 3.13 Å and 2.57 Å; The angles of $\text{N}_5—\text{H} \cdots \text{O}_2$ and $\text{N}_5—\text{H} \cdots \text{O}_6$ are 160.6° and 101.2° respectively. The optimized molecular conformation is very similar to that obtained by ^1H NMR^[5].

The calculation was performed on EC-486 PC using CART, GMAT and FPERT programs provided by National Research Council of Canada^[7]. 222 internal coordinates were used as shown in Fig.5, 69 of which were attributed to stretching (ν), 121 to bending (δ), 20 to wagging out of plane (ω) and 12 to twisting (τ). The number of internal coordinates exceeded that of normal vibrations and redundant symmetry coordinates were eliminated during normalization by the GMAT program^[7]. A modified Urey-Bradley force field was used in the calculation.

TABLE 1. Structural Parameters for $[\text{Pt}(\text{trpy})\text{GS}]^+$

Atoms	Distance (Å)	Atoms	Angle (deg)	Atoms	Angle (deg)
Pt – N ₁	2.129	N ₁ – Pt – N ₂	79.0	C ₆ – N ₂ – C ₁₀	125.5
Pt – N ₂	1.964	N ₂ – Pt – N ₃	84.0	C ₇ – C ₈ – C ₉	120.0
Pt – S	2.320	N ₁ – Pt – S	100.9	C ₇ – C ₆ – N ₂	123.5
N ₁ – C ₁	1.296	N ₃ – Pt – S	96.2	C ₉ – C ₁₀ – N ₂	110.4
C ₁ – C ₂	1.351	C ₁ – N ₁ – Pt	128.8	C ₁₆ – S – Pt	95.6
C ₂ – C ₃	1.445	C ₁₅ – N ₃ – Pt	127.8	C ₁₇ – C ₁₆ – S	113.7
C ₃ – C ₄	1.383	N ₁ – C ₁ – C ₂	123.2	C ₁₆ – C ₁₇ – N ₄	111.7
C ₄ – C ₅	1.379	N ₃ – C ₁₅ – C ₁₄	121.1	N ₄ – C ₁₇ – C ₂₃	110.6
C ₅ – N ₁	1.382	C ₁ – C ₂ – C ₃	120.7	C ₁₆ – C ₁₇ – C ₂₃	109.0
C ₅ – C ₆	1.487	C ₁₅ – C ₁₄ – C ₁₃	120.2	C ₁₇ – C ₂₃ – O ₄	117.6
C ₆ – N ₂	1.293	C ₂ – C ₃ – C ₄	113.9	C ₁₇ – C ₂₃ – N ₆	121.3
C ₆ – C ₇	1.132	C ₁₄ – C ₁₃ – C ₁₂	119.1	N ₆ – C ₂₃ – O ₄	120.1
C ₇ – C ₈	1.347	C ₃ – C ₄ – C ₅	122.3	C ₂₃ – N ₆ – C ₂₄	123.0
S – C ₁₆	1.795	C ₁₃ – C ₁₂ – C ₁₁	121.0	N ₆ – C ₂₄ – C ₂₅	110.3
C ₁₆ – C ₁₇	1.552	C ₄ – C ₅ – N ₁	119.4	C ₂₄ – C ₂₅ – O ₅	119.0
C ₁₇ – N ₄	1.458	C ₁₅ – N ₃ – Pt	119.0	C ₂₄ – C ₂₅ – O ₆	119.1
N ₄ – C ₁₈	1.417	C ₁ – N ₁ – C ₅	118.4	O ₅ – C ₂₅ – O ₆	118.1
C ₁₈ – O ₃	1.394	C ₁₅ – N ₃ – C ₁₁	119.2	C ₁₇ – N ₄ – C ₁₈	121.5
C ₁₈ – C ₁₉	1.509	C ₄ – C ₅ – C ₆	125.6	N ₄ – C ₁₈ – O ₃	120.6
C ₁₉ – C ₂₀	2.163	C ₁₂ – C ₁₁ – C ₁₀	124.9	N ₄ – C ₁₈ – C ₁₉	120.1
C ₂₀ – C ₂₁	1.564	C ₅ – N ₁ – Pt	112.0	C ₁₉ – C ₁₈ – O ₃	119.2
C ₂₁ – N ₅	1.518	C ₁₁ – N ₃ – Pt	112.9	C ₁₈ – C ₁₉ – C ₂₀	112.3
C ₂₁ – C ₂₂	1.525	N ₁ – C ₅ – C ₆	112.7	C ₁₉ – C ₂₀ – C ₂₁	114.2
C ₂₂ – O ₁	1.394	N ₃ – C ₁₁ – C ₁₀	115.7	C ₂₀ – C ₂₁ – N ₅	111.4
C ₂₂ – O ₂	1.393	C ₅ – C ₆ – C ₇	115.0	C ₂₀ – C ₂₁ – C ₂₂	109.9
C ₁₇ – C ₂₃	1.515	C ₁₁ – C ₁₀ – C ₉	136.6	C ₂₂ – C ₂₁ – N ₅	113.2
C ₂₃ – O ₄	1.394	C ₅ – C ₆ – N ₂	116.2	C ₂₁ – C ₂₂ – O ₁	119.4
C ₂₃ – N ₆	1.419	C ₁₁ – C ₁₀ – N ₂	112.3	C ₂₁ – C ₂₂ – O ₂	119.3
N ₆ – C ₂₄	1.455	C ₆ – N ₂ – Pt	119.1	O ₁ – C ₂₂ – O ₂	116.7
C ₂₄ – C ₂₅	1.505	C ₁₀ – N ₂ – Pt	115.0		
C ₂₅ – O ₅	1.392	C ₆ – C ₇ – C ₈	118.3		
C ₂₅ – O ₆	1.393	C ₁₀ – C ₉ – C ₈	118.7		

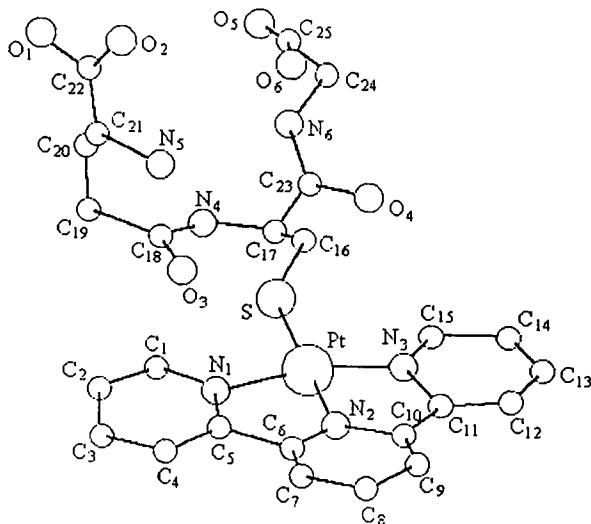
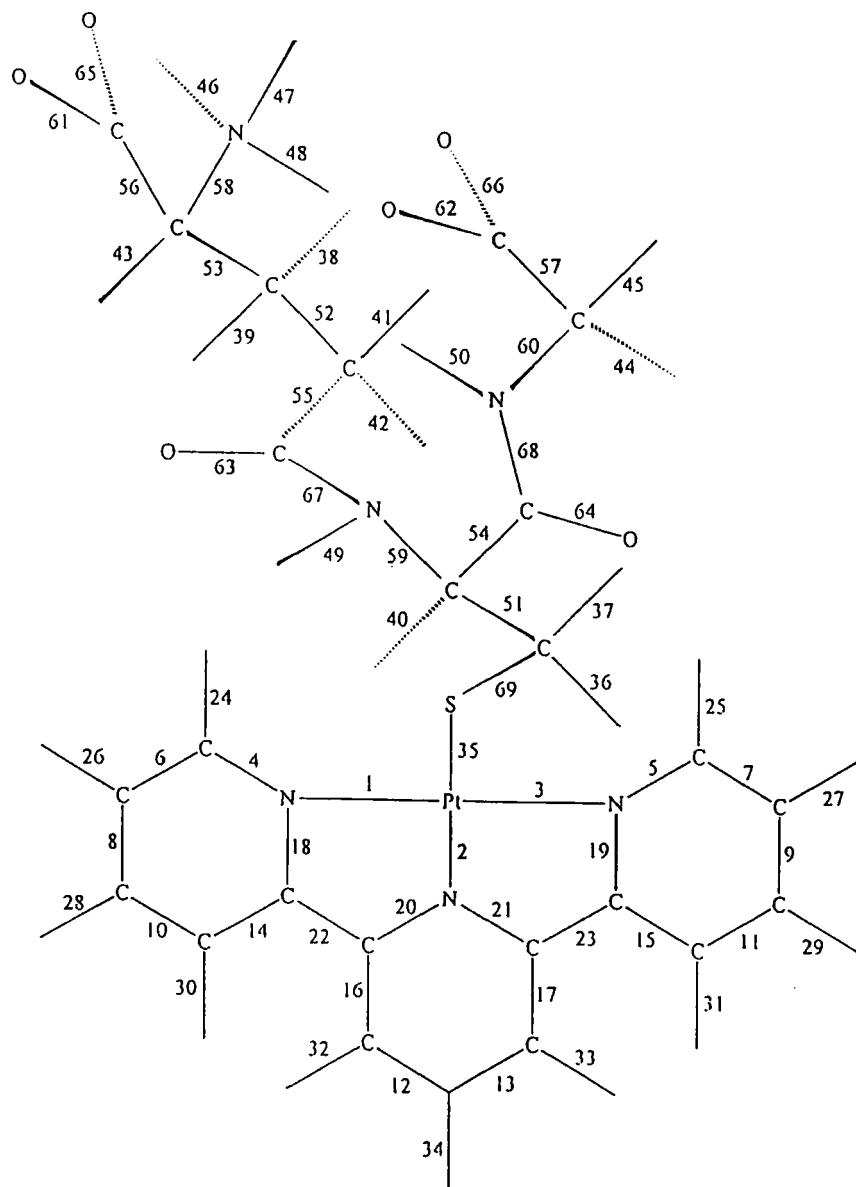



FIG. 4. The molecular structure of $[\text{Pt}(\text{trpy})\text{GS}]\text{Cl}$.

The initial values of the force constants were collected and transferred from related molecular^[10, 12, 13], and refined in accordance with the position of bonds in the IR, Raman and FIR spectra. The final values of force constants are shown in TABLE 3. The observed and the calculated frequencies together with the percentages of potential energy distribution (PED) are presented in TABLE 3. The assignment of frequencies in TABLE 3 considers predominant contribution of the internal coordinates. The calculated fundamentals agree well with the observed ones. The average deviation of the calculated frequencies from the observed ones is about 3.44 cm^{-1} , and the maximum deviation is 15.1 cm^{-1} .

DISCUSSION

As shown in TABLE 3, the frequencies above 2800 cm^{-1} are dominated by a single vibrational mode (its contribution to PED is higher than 90%), while the frequencies in the region $2800\text{--}600 \text{ cm}^{-1}$ are attributed to coupling of several vibrational modes.

FIG. 5. Numerical identification of internal coordinates for $[\text{Pt}(\text{trpy})\text{GS}]^+$.

(continued)

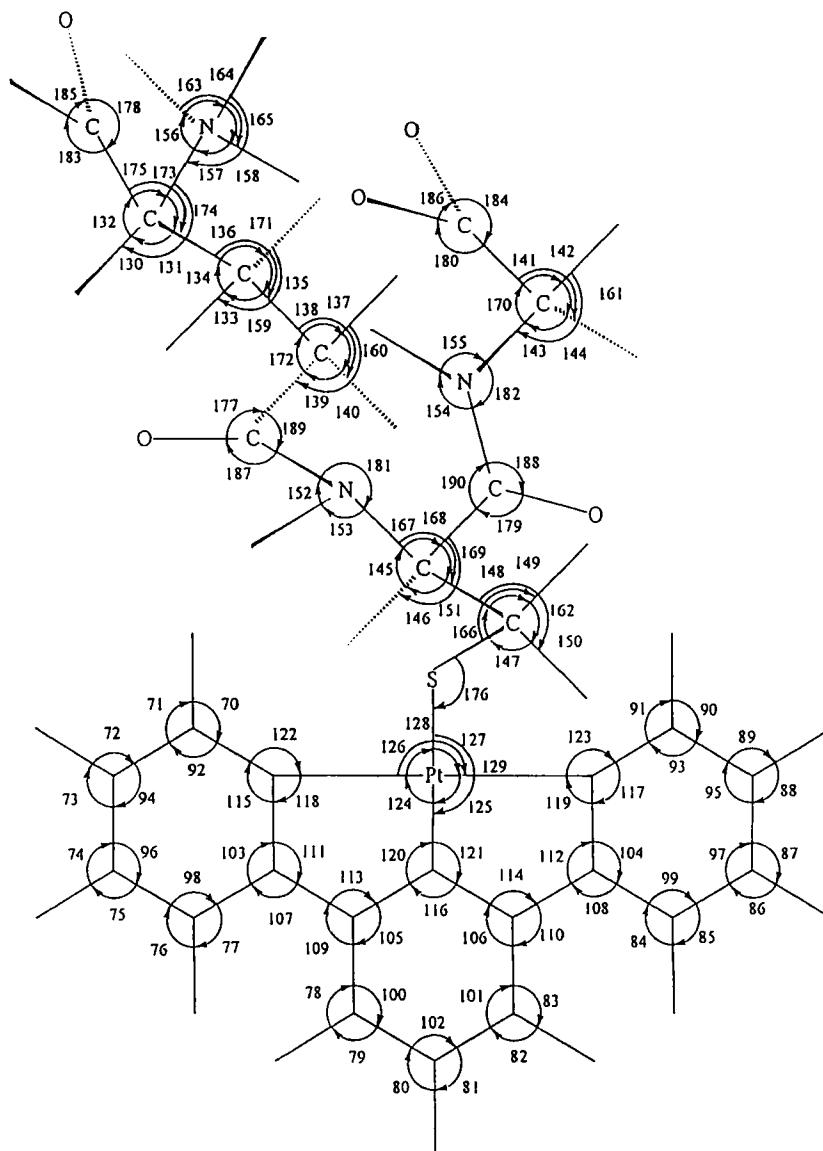


FIG. 5. (continued)

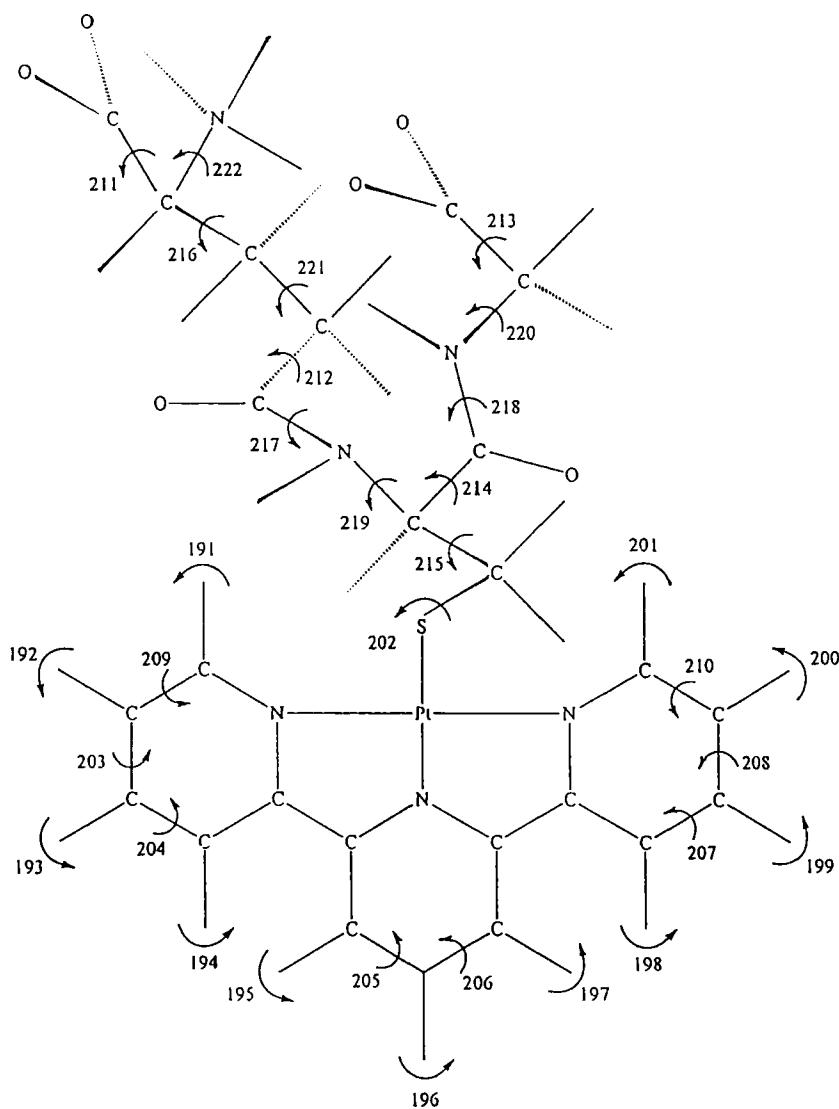


FIG. 5. (continued)

(continued)

TABLE 2. Force Constants for [Pt(trpy)GS]⁺

Symbol*	Coordinates involved	Value	Symbol	Coordinates involved	Value
K ₁	Pt - N	1.971	H ₂₆	∠CNC (trpy)	0.990
K ₂	N ₁ - C ₁ , N ₃ - C ₁₅	6.073	H ₂₇	∠Pt N ₁ C ₅ , ∠Pt N ₃ C ₁₁	0.851
K ₃	C ₁ - C ₂ , C ₁₅ - C ₁₄	6.062	H ₂₈	∠Pt N ₂ C ₆ , ∠Pt N ₂ C ₁₀	0.394
K ₄	C ₂ - C ₃ , C ₁₄ - C ₁₃ , C ₃ - C ₄ , C ₁₃ - C ₁₂ , C ₇ - C ₈ , C ₉ - C ₈	6.041	H ₂₉	∠Pt N ₁ C ₁ , ∠Pt N ₃ C ₁₅	0.297
K ₅	C ₄ - C ₅ , C ₆ - C ₇ , C ₁₀ - C ₉ , C ₁₁ - C ₁₂	6.023	H ₃₀	∠N ₁ Pt N ₂ , ∠N ₃ Pt N ₂	0.202
K ₆	N ₁ - C ₅ , N ₃ - C ₁₁ , N ₂ - C ₂₀ , N ₂ - C ₂₁	6.171	H ₃₁	∠N ₁ Pt S , ∠N ₃ Pt S	0.152
K ₇	C ₅ - C ₆ , C ₁₀ - C ₁₁	6.011	H ₃₂	∠N ₂ Pt S	0.051
K ₈	C - H (trpy)	5.106	H ₃₃	∠N ₃ Pt S	0.051
K ₉	Pt - S	1.811	H ₃₄	∠CCH , ∠NCH , ∠SCH (GS)	0.443
K ₁₀	C ₁₆ - H , C ₂₀ - H	4.648	H ₃₅	∠CNH (GS)	0.335
K ₁₁	C - H (GS)	4.705	H ₃₆	∠HCH (GS)	0.532
K ₁₂	N - H (GS)	6.014	H ₃₇	∠HNH (GS)	0.601
K ₁₃	C ₁₆ - C ₁₇ , C ₁₉ - C ₂₀ , C ₂₀ - C ₂₁	3.853	H ₃₈	∠CCC , ∠NCC , ∠SCC (GS)	0.302
K ₁₄	C ₁₇ - C ₂₃ , C ₁₈ - C ₁₉ , C ₂₁ - C ₂₂ , C ₂₄ - C ₂₅	3.627	H ₃₉	∠CSPt	0.467
K ₁₅	C ₂₁ - N ₅ , C ₁₇ - N ₄ , C ₂₄ - N ₆	4.525	H ₄₀	∠C ₁₉ C ₁₈ O ₃ , ∠C ₁₇ C ₂₃ O ₄ , ∠C ₂₁ C ₂₂ O ₂ , ∠C ₂₄ C ₂₅ O ₅	1.242
K ₁₆	C ₂₂ - O ₂ , C ₂₅ - O ₅	7.644	H ₄₁	∠CNC (GS)	1.090
K ₁₇	C ₁₈ - O ₃ , C ₂₃ - O ₄	7.302	H ₄₂	∠C ₂₁ C ₂₂ O ₁ , ∠C ₂₄ C ₂₅ O ₆	1.091
K ₁₈	C ₂₂ - O ₁ , C ₂₅ - O ₆	7.111	H ₄₃	∠OCO (GS)	1.281
K ₁₉	C ₁₈ - N ₄ , C ₂₃ - N ₆	4.219	H ₄₄	∠NCO (GS)	1.670
K ₂₀	C ₁₆ - S	2.850	H ₄₅	∠C ₁₉ C ₁₈ N ₄ , ∠C ₁₇ C ₂₃ N ₆	1.102
H ₂₁	∠CCH (trpy)	0.451	W ₄₆	∠H-CC-C , ∠H-CC-N (trpy)	0.308
H ₂₂	∠C ₂ C ₁ N ₁ , ∠C ₁₄ C ₁₅ C ₁₃ , ∠C ₁ C ₂ C ₃ ∠C ₁₅ C ₁₄ C ₁₃ , ∠C ₂ C ₃ C ₄ , ∠C ₃ C ₄ C ₅ ∠C ₆ C ₇ C ₈ , ∠C ₇ C ₈ C ₉ , ∠C ₈ C ₉ C ₁₀ ∠C ₁₁ C ₁₂ C ₁₃ , ∠C ₁₂ C ₁₃ C ₁₄	1.062	H ₄₇	∠S-PtN ₂ -N ₁	0.112
H ₂₃	∠N ₁ C ₅ C ₄ , ∠N ₃ C ₁₁ C ₁₂ , ∠N ₂ C ₆ C ₇	1.159	T ₄₈	∠CC-C-C (trpy)	0.161
H ₂₄	∠C ₄ C ₅ C ₆ , ∠C ₁₂ C ₁₁ C ₁₀ , ∠C ₅ C ₆ C ₇ ∠C ₉ C ₁₀ C ₁₁	1.632	T ₄₉	∠NC-C-C (trpy)	0.472
H ₂₅	∠N ₁ C ₅ C ₆ , ∠N ₂ C ₆ C ₅ , ∠N ₂ C ₁₀ C ₁₁ ∠N ₃ C ₁₁ C ₁₀	1.552	T ₅₀	∠C ₂₀ C ₂₁ -C ₂₂ -O ₁ , ∠C ₂₀ C ₁₉ -C ₁₈ -O ₃ ∠C ₁₆ C ₁₇ -C ₂₃ -O ₄ , ∠N ₆ C ₂₄ -C ₂₅ -O ₅	0.109
			T ₅₁	∠C ₂₃ C ₁₇ -C ₁₆ -S , ∠C ₁₉ C ₂₀ -C ₂₁ -C ₂₂	0.191
			T ₅₂	∠O ₃ C ₁₈ -N ₄ -C ₁₇ , ∠O ₄ C ₂₃ -N ₆ -C ₂₄	0.132
			T ₅₃	∠C ₁₈ N ₄ -C ₁₇ -C ₁₆ , ∠C ₂₃ N ₆ -C ₂₄ -C ₂₅	0.121
			T ₅₄	∠C ₁₈ C ₁₉ -C ₂₀ -C ₂₁	0.120
			T ₅₅	∠C ₂₀ C ₂₁ -N ₅ -H	0.091

* Notation and dimension are as follows: K, stretching force constant (mdyne per angstrom); H, bending force constant (mdyne per angstrom); W, wagging out-of-plane force constant (mdyne per angstrom); T, twisting force constant (mdyne per angstrom).

The broad bands around 3300cm^{-1} in IR spectra are assigned to the stretching vibrational modes of NH_3^+ and NH groups of GS. The Aromatic C–H stretching vibrational modes of trpy appear at 3060cm^{-1} in Raman spectroscopy, which are $3\text{--}14\text{cm}^{-1}$ higher than free trpy^[19]. The bands in region $2890\text{--}2970\text{cm}^{-1}$ are assigned to stretching vibrational modes of CH_2 and CH group of GS. The bands in the region $500\text{--}1650\text{cm}^{-1}$ are assigned to the scissoring, wagging, twisting and rocking vibrational modes of NH_3^+ , CH_2 group of GS, stretching, rocking and wagging vibration of COO^- group, C–C, C–N and C–S stretching, trpy ring stretching and the coupling of these vibrational modes respectively. The above results are consistent with the empirical assignments of these vibrational modes in the spectra of trpy complexes^[6, 10, 18, 19], GSH^[9] and some amino acid complexes^[12, 13, 20].

The vibrations including the Pt (II) occur below 700cm^{-1} and the most bands are attributed to the coupling of several vibrational modes. On the basis of predominant potential energy distribution, the FIR active band 357cm^{-1} and Raman active band 353cm^{-1} are assigned to Pt–S stretching vibrational mode, which is same as or very close to $[\text{Pt}(\text{trpy})(\text{SCH}_2\text{CH}_2\text{OH})]\text{NO}_3$ (357cm^{-1}) and $[\text{Pt}(\text{trpy})(\text{SCH}_2\text{CH}_3)]\text{PF}_6$ (355 cm^{-1})^[18].

R. J. Mureinik and M. Bidani assigned the 460cm^{-1} band to Pt–N stretching vibrational modes and 520cm^{-1} band to N–Pt–N asymmetric stretching vibrational modes^[14]. In our research, the FIR active band at 459.5cm^{-1} is assigned to the coupling of Pt–N stretching and trpy ring stretching and bending modes. But the percentage of Pt–N stretching modes in 459.5cm^{-1} is very small. Its contribution to the PED is only 3.6%, while the trpy ring stretching and bending vibrational modes to PED are 12.0% and 20.9%.

We have tried to adjust the Pt–N force constants to reproduce the 520cm^{-1} band, but it reaches an unreasonable high value because of its low contribution to PED. The Pt–N stretching mode may be around $220\pm10\text{cm}^{-1}$ according to its predominate contribution to PED, and this is consistent with the assignment of Pt–N stretching mode in $\text{Pt}(\text{amp})\text{Cl}_2$ (where amp=2-aminomethylpyridine)^[15].

The force constants listed in TABLE 2 are same as or close to those for the corresponding complexes of $\text{Ru}(\text{trpy})_2$ ^[10], L-asparagine^[20], glutamic acid^[12], and acetamide^[13], these results show the

TABLE 3. Calculated and Observed Wavenumber and Percent PED for $[\text{Pt}(\text{trpy})\text{GS}]^+$

IR (cm^{-1}) obs.	Raman (cm^{-1}) obs.	Calculated (cm^{-1})	Potential energy distribution (%)	Band assignment
		3368.2	99.8K ₁₂	$\nu(\text{NH})$
3319.2		3315.4	99.5K ₁₂	$\nu(\text{NH})$
		3302.0	99.5K ₁₂	$\nu_a(\text{NH}_3^+)$
3297.8		3301.9	99.5K ₁₂	$\nu_a(\text{NH}_3^+)$
		3209.2	99.9K ₁₂	$\nu_a(\text{NH}_3^+)$
		3070.6	98.5K ₈	$\nu(\text{CH})$ (trpy)
		3068.9	98.7K ₈	$\nu(\text{CH})$ (trpy)
		3068.3	98.8K ₈	$\nu(\text{CH})$ (trpy)
		3067.8	98.7K ₈	$\nu(\text{CH})$ (trpy)
		3067.1	98.8K ₈	$\nu(\text{CH})$ (trpy)
		3066.9	98.8K ₈	$\nu(\text{CH})$ (trpy)
		3065.8	98.9K ₈	$\nu(\text{CH})$ (trpy)
		3065.3	99.0K ₈	$\nu(\text{CH})$ (trpy)
		3065.2	99.0K ₈	$\nu(\text{CH})$ (trpy)
		3064.3	99.1K ₈	$\nu(\text{CH})$ (trpy)
		3064.0	99.1K ₈	$\nu(\text{CH})$ (trpy)
		2973.9	99.4K ₁₁	$\nu(\text{CH})$ (GS)
		2972.4	99.1K ₁₁	$\nu(\text{CH})$ (GS)
2950.8		2952.3	97.3K ₁₀	$\nu(\text{CH})$ (GS)
		2937.6	98.9K ₁₁	$\nu(\text{CH})$ (GS)
2932.8		2935.7	97.6K ₁₁	$\nu(\text{CH})$ (GS)
2912.1		2917.0	99.0K ₁₀	$\nu(\text{CH})$ (GS)
2908.7		2901.9	98.4K ₁₁	$\nu(\text{CH})$ (GS)
2893.1		2901.5	99.4K ₁₁	$\nu(\text{CH})$ (GS)
		2884.6	98.4K ₁₀	$\nu(\text{CH})$ (GS)
		1857.2	8.8K ₅ + 19.9K ₆ + 19.9K ₇ + 9.6H ₂₄	$\nu(\text{CC})$ (trpy)
		1841.2	35.7K ₁₀ + 33.8K ₁₃ + 21.3H ₃₅	$\nu(\text{CH}_2)$, $\delta(\text{CH}_2)$, $\nu(\text{CC})$ (GS)
		1812.1	24.1K ₅ + 30.7K ₇ + 9.0H ₂₁	$\nu(\text{CC})$ (trpy)
		1791.1	29.6K ₅ + 23.0K ₆ + 12.5H ₂₄ + 14.6H ₂₅	$\nu(\text{CC})$ (trpy)
		1739.1	21.5K ₅ + 28.6K ₆ + 15.5H ₂₄	$\nu(\text{CC})$ (trpy)
		1687.5	37.7K ₄ + 12.6K ₅ + 20.3H ₂₁	$\nu(\text{CC})$, $\delta(\text{CCC})$ (trpy)
		1669.7	30.4K ₃ + 36.6K ₄ + 18.9H ₂₁	$\nu(\text{CC})$, $\delta(\text{CH})$ (trpy)
		1668.6	29.4K ₃ + 36.5K ₄ + 17.8H ₂₁	$\nu(\text{CC})$, $\delta(\text{CH})$ (trpy)
1658.7		1663.8	93.8H ₃₈	$\delta_a(\text{NH}_3^+)$
1649.5		1646.4	95.2H ₃₈	$\delta_a(\text{NH}_3^+)$

TABLE 3. (Continued)

IR (cm^{-1}) obs.	Raman (cm^{-1}) obs.	Calculated (cm^{-1})	Potential energy distribution (%)	Band assignment
1600.0	1606.7	1639.3	$13.0\text{K}_2 + 23.2\text{K}_4 + 24.8\text{H}_{21}$	$\nu(\text{CC}), \delta(\text{CH})$ (trpy)
		1621.0	$48.8\text{K}_{16} + 36.6\text{K}_{18}$	$\nu(\text{COO}^-)$
		1607.9	$48.3\text{K}_{16} + 36.0\text{K}_{18}$	$\nu(\text{COO}^-)$
		1596.6	$16.1\text{K}_4 + 21.6\text{K}_5 + 41.1\text{K}_4$	$\nu(\text{CC}), (\text{trpy})$
		1574.3	$10.3\text{K}_{14} + 58.4\text{K}_{12} + 8.7\text{H}_{46}$	$\nu(\text{CC}), \nu(\text{NH})$ (GS)
		1564.6	61.6K_{17}	$\nu(\text{C=O})$
		1557.5	$9.1\text{K}_2 + 26.2\text{K}_4 + 10.1\text{K}_7$	$\nu(\text{CC})$
		1537.4	$14.4\text{K}_4 + 12.8\text{K}_5 + 24.0\text{K}_6 + 17.6\text{H}_{21}$	$\nu(\text{CC}), \delta(\text{CH})$ (trpy)
1513.4	1479.3	1510.8	$20.5\text{K}_4 + 46.9\text{H}_{21}$	$\nu(\text{CC}), \delta(\text{CH})$ (trpy)
		1464.2	$19.3\text{K}_{14} + 19.9\text{K}_{15} + 15.9\text{K}_{19}$	$\nu(\text{CC}), \nu(\text{CN})$ (GS)
		1452.5	$14.7\text{K}_4 + 10.8\text{K}_5 + 10.2\text{K}_6 + 50.1\text{H}_{21}$	$\nu(\text{CC}), \delta(\text{CH})$ (trpy)
		1448.8	$32.3\text{K}_{14} + 14.7\text{K}_{16} + 20.8\text{K}_{18}$	$\nu(\text{CC}), \nu(\text{C=O})$ (GS)
1440.1	1413.5	1436.6	$14.4\text{K}_{14} + 10.2\text{K}_{15} + 26.4\text{K}_{19} + 13.5\text{H}_{37}$	$\nu(\text{CC}), \nu(\text{CN}), \delta(\text{CH}_2)$ (GS)
		1433.7	$13.7\text{K}_{14} + 49.8\text{H}_{37}$	$\nu(\text{CC}), \delta(\text{CH}_2)$ (GS)
		1420.9	$10.1\text{K}_6 + 55.7\text{H}_{21}$	$\nu(\text{CC}), \delta(\text{CH})$ (trpy)
		1413.9	$10.9\text{K}_{13} + 15.3\text{H}_{35} + 68.5\text{H}_{37}$	$\delta(\text{CH}_2)$ (GS)
1401.2		1407.8	$9.3\text{K}_6 + 8.6\text{K}_5 + 56.7\text{H}_{21}$	$\nu(\text{CC}), \delta(\text{CH})$ (trpy)
		1396.8	$10.2\text{K}_{13} + 14.5\text{H}_{35} + 64.3\text{H}_{37}$	$\delta(\text{CH}_2)$ (GS)
		1374.4	$13.9\text{K}_{14} + 14.6\text{K}_{19} + 29.4\text{H}_{37}$	$\nu(\text{CC}), \nu(\text{CN}), \delta(\text{CH}_2)$ (GS)
1371.5		1370.5	$19.4\text{H}_{35} + 67.6\text{H}_{37}$	$\delta(\text{CH}_2)$ (GS)
		1349.2	$23.9\text{K}_{13} + 11.2\text{K}_{15} + 26.6\text{H}_{35} + 23.0\text{H}_{37}$	$\nu(\text{CC}), \nu(\text{CN}), \delta(\text{CH}_2)$ (GS)
		1336.2	$9.6\text{K}_4 + 9.0\text{K}_6 + 51.8\text{H}_{21}$	$\delta(\text{CH})$ (trpy)
1335.7	1309.2	1315.9	89.7W_{47}	$\omega(\text{CH})$ (trpy)
		1294.6	$11.8\text{K}_7 + 67.9\text{H}_{21}$	$\nu(\text{CC}), \delta(\text{CH})$ (trpy)
1272.1	1277.0	1278.5	$29.5\text{K}_{15} + 24.8\text{H}_{35} + 10.2\text{H}_{36}$	$\nu(\text{CC}), \nu(\text{CN}), \delta(\text{CH}_2)$ (GS)
		1227.6	$13.6\text{K}_{14} + 15.4\text{K}_{15} + 36.6\text{H}_{35}$	$\nu(\text{CC}), \nu(\text{CN}), \delta(\text{CH}_2)$ (GS)
		1217.5	$10.3\text{K}_1 + 52.2\text{H}_{21}$	$\delta(\text{CH})$ (trpy)
1212.5		1217.0	$11.8\text{K}_{14} + 14.1\text{K}_{15} + 40.7\text{H}_{35}$	$\nu(\text{CC}), \nu(\text{CN}), \delta(\text{CH}_2)$ (GS)
		1214.4	$58.6\text{W}_{47} + 11.2\text{T}_{49} + 20.0\text{T}_{50}$	$\omega(\text{CH}), \tau(\text{CC})$ (trpy)
		1199.3	$13.0\text{K}_2 + 55.7\text{H}_{21}$	$\omega(\text{CH})$ (trpy)
1137.1	1174.9	1179.6	$61.3\text{W}_{47} + 27.5\text{T}_{50}$	$\omega(\text{CH}), \tau(\text{CC})$ (trpy)
		1154.1	$27.8\text{H}_{35} + 20.8\text{H}_{36} + 30.9\text{H}_{38}$	$\delta(\text{CH}_2), \delta(\text{NH}_3^+)$ (GS)
		1139.1	56.9H_{35}	$\delta(\text{CH}_2)$, (GS)
		1130.0	$42.9\text{H}_{35} + 40.4\text{H}_{36}$	$\delta(\text{CH}_2)$, (GS)
	1121.6	1125.6	$39.4\text{H}_{21} + 19.2\text{H}_{22} + 10.5\text{H}_{23}$	$\delta(\text{CH}), \delta(\text{CCC})$ (trpy)

(continued)

TABLE 3. (Continued)

IR (cm^{-1}) obs.	Raman (cm^{-1}) obs.	Calculated (cm^{-1})	Potential energy distribution (%)	Band assignment
1099.7		1117.4	67.8H ₂₁	$\delta(\text{CH})$ (trpy)
		1106.0	13.2K ₄ + 71.7H ₂₁	$\nu(\text{CC})$, $\delta(\text{CH})$ (trpy)
		1103.4	11.7K ₄ + 60.5H ₂₁ + 11.4H ₂₂	$\delta(\text{CC})$, $\delta(\text{CH})$ (trpy)
		1089.2	33.0H ₃₅ + 44.1H ₃₆	$\delta(\text{CH}_2)$ (GS)
		1079.9	14.6K ₄ + 47.2H ₂₁ + 16.1H ₂₂	$\delta(\text{CCC})$, $\delta(\text{CH})$ (trpy)
1065.9	1057.8	1070.1	46.9H ₃₅ + 32.4H ₃₆	$\delta(\text{CH}_2)$ (GS)
		1063.2	78.5H ₃₅	$\delta(\text{CH}_2)$ (GS)
		1042.0	11.4K ₃ + 19.4K ₄ + 51.5H ₂₁	$\nu(\text{CC})$, $\delta(\text{CH})$ (trpy)
		1040.0	10.9K ₃ + 15.6K ₄ + 47.0H ₂₁	$\nu(\text{CC})$, $\delta(\text{CH})$ (trpy)
		1035.8	11.5K ₃ + 9.8K ₄ + 22.6H ₂₁ + 19.4H ₂₂	$\nu(\text{CC})$, $\delta(\text{CH})$ (trpy)
1015.1	1020.2	1032.7	86.3H ₃₅	$\delta(\text{CH}_2)$ (GS)
		1022.9	12.9K ₃ + 12.4K ₄ + 27.8H ₂₁ + 10.5H ₂₂	$\nu(\text{CC})$, $\delta(\text{CH})$ (trpy)
		1008.2	23.4K ₄ + 42.8H ₂₁	$\nu(\text{CC})$, $\delta(\text{CH})$ (trpy)
		1007.4	95.7H ₃₅	$\delta(\text{CH}_2)$ (GS)
		996.2	84.5H ₃₅	$\delta(\text{CH}_2)$ (GS)
894.7	883.3	993.8	92.6H ₃₅	$\delta(\text{CH}_2)$ (GS)
		970.4	35.6K ₄ + 10.3K ₅ + 9.2K ₆	$\nu(\text{CC})$ (trpy)
		962.3	25.4K ₁₅ + 47.2H ₃₅	$\delta(\text{CH}_2)$, $\nu(\text{CC})$ (GS)
		958.4	90.3W ₄₇	$\omega(\text{CH})$ (trpy)
		948.9	24.0K ₃ + 35.0K ₄ + 18.4H ₂₁	$\nu(\text{CC})$, $\delta(\text{CH})$ (trpy)
825.8		942.2	21.8K ₁₅ + 60.9H ₃₅ + 9.8H ₃₆	$\delta(\text{CH}_2)$, $\nu(\text{CC})$ (GS)
		932.8	32.3K ₁₅ + 41.4H ₃₅	$\delta(\text{CH}_2)$, $\nu(\text{CC})$ (GS)
		926.8	82.7W ₄₇	$\omega(\text{CH})$ (trpy)
		923.8	14.9K ₃ + 30.9K ₄ + 24.8W ₄₇	$\nu(\text{CC})$, $\omega(\text{CH})$ (trpy)
		892.3	10.9K ₄ + 62.5W ₄₇	$\nu(\text{CC})$, $\omega(\text{CH})$ (trpy)
778.4		884.7	27.7K ₁₃ + 51.0H ₃₅ + 9.0H ₃₆	$\delta(\text{CH}_2)$, $\nu(\text{CC})$ (GS)
		855.9	38.5K ₁₃ + 48.9H ₃₅	$\delta(\text{CH}_2)$, $\nu(\text{CC})$ (GS)
		828.9	9.3K ₄ + 17.3K ₅ + 17.9K ₆ + 16.7H ₂₂	$\nu(\text{CC})$, $\delta(\text{CH})$ (trpy)
		821.7	11.4K ₁₉ + 36.2H ₃₅ + 10.2H ₄₂	$\nu(\text{CC})$, $\delta(\text{CCC})$ (GS)
		815.7	99.0W ₄₇	$\omega(\text{CH})$ (trpy)
		812.9	15.1K ₁₄ + 27.3H ₃₅ + 14.7H ₃₆	$\delta(\text{CH}_2)$, $\nu(\text{CC})$ (GS)
		807.4	91.7W ₄₇	$\omega(\text{CH})$ (trpy)
		776.5	10.7K ₁₄ + 17.7K ₁₇ + 19.5K ₁₉ + 11.0H ₃₅ + 11.9H ₄₂	$\nu(\text{CC})$, $\delta(\text{CCC})$, $\nu(\text{CN})$, $\delta(\text{CCN})$ (GS)
		763.3	38.8K ₁₄ + 17.8K ₁₆ + 17.2K ₁₈ + 11.7H ₃₅	$\nu(\text{CC})$, $\nu(\text{CO})$, $\delta(\text{CCC})$, $\delta(\text{C=O})$ (GS)

TABLE 3. (Continued)

IR (cm^{-1}) obs.	Raman (cm^{-1}) obs.	Calculated (cm^{-1})	Potential energy distribution (%)	Band assignment
727.8	658.4	757.3	$13.9\text{K}_{14} + 53.4\text{H}_{36}$	$\nu(\text{CC})$, $\delta(\text{CH}_2)$ (GS)
		747.7	$13.5\text{K}_{20} + 69.0\text{H}_{35}$	$\delta(\text{CH}_2)$ (GS)
		740.7	97.4W_{47}	$\omega(\text{CH})$ (trpy)
		738.1	98.7W_{47}	$\omega(\text{CH})$ (trpy)
		721.9	$19.5\text{K}_5 + 43.7\text{H}_{22}$	$\nu(\text{CC})$, $\delta(\text{CCC})$ (trpy)
		716.0	$53.2\text{H}_{35} + 15.6\text{H}_{36}$	$\delta(\text{CH}_2)$ (GS)
		701.5	$10.5\text{K}_4 + 37.5\text{H}_{22} + 9.1\text{H}_{24}$	$\delta(\text{CC})$ (trpy)
		691.6	$9.1\text{K}_{14} + 17.6\text{K}_{19} + 38.6\text{H}_{35}$	$\nu(\text{CC})$, $\nu(\text{CN})$, $\delta(\text{CH}_2)$ (GS)
		686.7	$57.6\text{K}_{20} + 27.0\text{H}_{35}$	$\nu(\text{CS})$, $\delta(\text{CH}_2)$ (GS)
		675.7	40.1H_{22}	$\delta(\text{CCC})$ (trpy)
660.7	658.4	675.1	$47.4\text{H}_{35} + 36.9\text{H}_{36}$	$\delta(\text{CH}_2)$ (GS)
		658.3	$10.0\text{H}_{21} + 47.3\text{H}_{22}$	$\delta(\text{CCC})$ (trpy)
		654.6	$15.0\text{K}_{13} + 12.6\text{H}_{35} + 45.9\text{H}_{36}$	$\nu(\text{CC})$, $\delta(\text{CH}_2)$ (GS)
608.4		639.9	$11.3\text{K}_6 + 10.4\text{H}_{21} + 49.0\text{H}_{22}$	$\nu(\text{CC})$, $\delta(\text{CCC})$ (trpy)
		604.1	$18.2\text{K}_{14} + 15.3\text{H}_{35} + 19.8\text{H}_{45}$	$\nu(\text{CC})$, $\delta(\text{CH}_2)$, $\delta(\text{CCN})$ (GS)
548.2		556.4	$18.6\text{K}_5 + 21.1\text{H}_{24} + 22.1\text{H}_{25}$	$\nu(\text{CC})$, $\delta(\text{CCC})$ (trpy)
		548.1	$24.1\text{K}_{14} + 29.1\text{H}_{35}$	$\nu(\text{CC})$, $\delta(\text{CH}_2)$ (GS)
517.7		539.8	$11.9\text{K}_{14} + 15.9\text{H}_{35} + 13.2\text{H}_{41} + 10.5\text{H}_{44}$ + $12.1\text{H}_{45} + 12.0\text{H}_{46}$	$\nu(\text{CC})$, $\delta(\text{CH}_2)$, $\delta(\text{COO}')$ (GS)
		533.7	$14.7\text{K}_{14} + 10.7\text{H}_{41} + 11.0\text{H}_{43} + 43.3\text{H}_{44}$	$\nu(\text{CC})$, $\delta(\text{COO}')$ (GS)
484.8		532.0	$10.0\text{K}_{14} + 11.7\text{H}_{35} + 9.9\text{H}_{41} + 35.1\text{H}_{44}$	$\nu(\text{CC})$, $\delta(\text{COO}')$ (GS)
		480.5	$34.9\text{W}_{47} + 14.1\text{T}_{49} + 43.3\text{T}_{50}$	$\delta(\text{CH})$, $\omega(\text{CC})$ (trpy)
459.5		466.7	$32.1\text{W}_{47} + 13.6\text{T}_{49} + 44.8\text{T}_{50}$	$\delta(\text{CH})$, $\omega(\text{CC})$ (trpy)
		457.7	$3.6\text{K}_1 + 12.0\text{K}_5 + 20.9\text{H}_{25}$	$\nu(\text{PtN})$, $\delta(\text{CCC})$ (trpy)
449.4	432.1	454.5	$22.3\text{H}_{35} + 30.9\text{H}_{41} + 12.3\text{H}_{46}$	$\delta(\text{CH}_2)$, $\delta(\text{COO}')$ (GS)
		442.6	$28.3\text{H}_{35} + 30.5\text{H}_{41} + 28.1\text{H}_{43}$	$\delta(\text{CH}_2)$, $\delta(\text{COO}')$ (GS)
380.0	353.1	435.7	$35.8\text{H}_{41} + 36.5\text{H}_{43}$	$\delta(\text{COO}')$
		408.4	$10.6\text{W}_{47} + 67.1\text{T}_{49}$	$\omega(\text{CC})$ (trpy)
357.3		378.6	$14.8\text{H}_{35} + 16.4\text{H}_{39} + 15.5\text{H}_{41} + 19.6\text{H}_{44}$	$\delta(\text{CH}_2)$, $\delta(\text{CCC})$, $\delta(\text{CCN})$ (GS)
		359.8	$6.7\text{K}_1 + 37.5\text{K}_9 + 9.6\text{H}_{23} + 9.7\text{T}_{49}$	$\nu(\text{PtN})$, $\delta(\text{CCC})$ (trpy)
		355.3	$6.3\text{K}_1 + 12.7\text{K}_7 + 24.6\text{K}_9 + 14.0\text{H}_{23}$	$\nu(\text{CC})$, $\delta(\text{CCC})$ (trpy)
		336.9	$8.5\text{K}_1 + 8.2\text{K}_7 + 19.3\text{H}_{24} + 11.9\text{T}_{49}$	$\nu(\text{CC})$, $\delta(\text{CCC})$, $\omega(\text{CC})$ (trpy)
		331.2	$20.9\text{H}_{35} + 29.0\text{H}_{39}$	$\delta(\text{CH}_2)$, $\delta(\text{CCC})$, $\delta(\text{CCN})$ (GS)
		324.5	$26.9\text{H}_{35} + 24.5\text{H}_{39}$	$\delta(\text{CH}_2)$, $\delta(\text{CCC})$, $\delta(\text{CCN})$ (GS)
		319.3	$43.2\text{W}_{47} + 33.7\text{T}_{49}$	$\omega(\text{PtS})$, $\delta(\text{CCC})$ (trpy)

(continued)

TABLE 3. (Continued)

IR (cm^{-1}) obs.	Raman (cm^{-1}) obs.	Calculated (cm^{-1})	Potential energy distribution (%)	Band assignment
309.6	295.3	308.4	$15.0\text{H}_{35} + 31.9\text{H}_{39} + 12.7\text{T}_{55}$	$\delta(\text{CH}_2)$, $\delta(\text{CCC})$ (GS)
		297.3	$8.9\text{K}_1 + 25.8\text{H}_{24} + 10.0\text{W}_{48} + 16.9\text{T}_{49}$	$\delta(\text{CCC})$ (GS)
		285.4	$22.5\text{H}_{35} + 20.1\text{H}_{39}$	$\delta(\text{CH}_2)$, $\delta(\text{CCC})$ (GS)
		279.2	$11.1\text{H}_{39} + 19.7\text{L}_{62}$	$\delta(\text{CCC})$, $\delta(\text{CNC})$ (GS)
		276.9	$47.9\text{T}_{49} + 10.2\text{T}_{55}$	$\delta(\text{CCC})$ (trpy)
		271.5	$12.7\text{H}_{40} + 12.0\text{H}_{44} + 23.4\text{T}_{51} + 16.7\text{T}_{56}$	$\delta(\text{COO}')$, $\tau(\text{NH}_3^+)$, $\tau(\text{COO}')$
		267.0	$10.9\text{H}_{39} + 13.1\text{T}_{51}$	$\delta(\text{CCC})$, $\tau(\text{COO}')$ (GS)
		266.2	$15.1\text{H}_{25} + 12.1\text{H}_{35} + 12.7\text{H}_{39}$	$\delta(\text{CCC})$ (trpy)
		254.9	$22.2\text{W}_{48} + 41.6\text{T}_{49} + 11.5\text{T}_{55}$	$\omega(\text{CC})$, $\tau(\text{CC})$ (trpy)
		248.3	$11.0\text{H}_{39} + 15.6\text{T}_{51}$	$\delta(\text{CH}_2)$, $\tau(\text{COO}')$ (GS)
262.9	212.4	224.5	$50.1\text{K}_1 + 9.6\text{H}_{27}$	$\nu(\text{PtN})$, $\delta(\text{CCC})$ (trpy)
		222.6	22.5K_1	$\nu(\text{PtN})$
		219.6	$13.5\text{K}_1 + 15.3\text{H}_{39} + 8.1\text{T}_{56}$	$\delta(\text{CCC})$, $\tau(\text{NH}_3^+)$ (GS)
		215.3	$17.5\text{H}_{39} + 12.4\text{T}_{51} + 14.8\text{T}_{56}$	$\delta(\text{COO}')$, $\tau(\text{NH}_3^+)$, $\tau(\text{COO}')$
		210.5	$10.6\text{H}_{39} + 17.3\text{T}_{51} + 19.7\text{T}_{55} + 21.8\text{T}_{54}$	$\delta(\text{COO}')$, $\tau(\text{COO}')$, $\tau(\text{CONH})$
		184.8	$9.5\text{H}_{35} + 8.9\text{H}_{36} + 16.5\text{H}_{39} + 14.4\text{H}_{40} +$	$\delta(\text{CCC})$, $\tau(\text{CC})$ (trpy)
		182.1	$14.4\text{T}_{52} + 14.5\text{T}_{54}$	
		171.5	$13.3\text{H}_{23} + 20.3\text{H}_{24} + 36.1\text{T}_{49}$	$\delta(\text{CCC})$, $\tau(\text{CC})$ (trpy)
		163.0	67.5H_{39}	$\delta(\text{CCC})$ (GS)
		148.8	$26.4\text{H}_{23} + 15.3\text{H}_{24} + 27.9\text{T}_{49}$	$\delta(\text{CC})$, $\tau(\text{CC})$ (trpy)
148.8		140.9	$16.5\text{H}_{35} + 34.7\text{H}_{39}$	$\delta(\text{CH}_2)$, $\delta(\text{CCC})$ (GS)
		128.1	$16.2\text{K}_1 + 9.9\text{H}_{39} + 11.2\text{T}_{55}$	$\tau(\text{CC})$ (GS)
		120.5	$21.4\text{K}_1 + 10.0\text{T}_{55}$	$\nu(\text{PtN})$, $\tau(\text{CC})$ (GS)
		111.0	$35.2\text{H}_{36} + 23.7\text{H}_{39} + 19.0\text{T}_{51}$	$\delta(\text{CC})$, $\tau(\text{CC})$ (GS)
121.0		109.4	$24.9\text{H}_{36} + 46.1\text{H}_{39}$	$\delta(\text{NH})$, $\delta(\text{CCC})$ (GS)

reliability of the final force constants. The nature of bands in the metal complex can be further understood from the final constants.

In spite of large molecular weight and complicated structure of the title compound, the small average deviation of 3.44cm^{-1} between the calculated and observed frequencies indicates that the optimized structure is appropriate, using a modified Urey-Bradley force field and introducing an

appropriate set of internal coordinates and corresponding rational force constants make the normal coordinate analysis successful.

REFERENCES

- [1] B. Rosenberg, L. van Camp, J. E. Ytroska, V. E. Manson, *Nature*, 1969; 22: 385.
- [2] L. M. Edwin, J. Reedijk, *Inorg. Chem.*, 1991; 30: 2648.
- [3] K. S. Wyatt, K. N. Harrison, C. M. Jensen, *Inorg. Chem.*, 1992; 31: 3867.
- [4] N. Hadjiliadis, N. Ferderigos, J-L. Butour, H. Marzarguil, G. Gasmi, J-P. Laussac, *Inorg. Chem.*, 1994; 33: 5057.
- [5] N. Juranic, V. Likic, N. M. Kostic and S. Macura, *Inorg. Chem.*, 1995; 34: 938.
- [6] E. M. A. Ratilla, B. K. Michael, M. S. Moxness and N. M. Kostic, *Inorg. Chem.*, 1990; 29: 918.
- [7] H. Fuhrer, W. B. Kartha, P. J. Krueger, H. H. Mantsch and R. N. Jones, *Chem. Rev.*, 1972; 72: 439.
- [8] B. Durham and S. R. Wilson, *J. Amer. Chem. Soc.*, 1980; 102: 600.
- [9] L. Zhu and N. M. Kostic, *Inorg. Chem.*, 1992; 31: 3994.
- [10] P. W. Hansen and P. W. Jensen, *Spectrochim. Acta.*, 1994; 50A: 169.
- [11] C. V. Weill and J. Corset, *Spectrochim. Acta.*, 1995; 51A: 2347.
- [12] F. J. Ramfrez and J. T. L. Navarrete, *Spectrochim. Acta.*, 1995; 51A: 293.
- [13] Y. Hase, *Spectrochim. Acta.*, 1995; 51A: 2561.
- [14] R. J. Mureinik and M. Bidani, *Inorg. Nucl. Chem. Lett.*, 1977; 12: 625.
- [15] M. L. Niven and G. C. Percy, *Spectroscopy letters*, 1977; 7: 519.
- [16] C. D. Li and L. J. Jiang, *Spectrochim. Acta*, 1993; 49A: 339.
- [17] L. J. Jiang and C. D. Li, *Spectroscopy letters*, 1994; 10: 1309.
- [18] K. W. Jennertr and J. T. Gill, *J. Amer. Chem. Soc.*, 1976; 98: 6159.
- [19] A. Sarkar and S. Chakravorti, *Spectroscopy letters*, 1994; 3: 305.
- [20] J. Casado, J. T. L. Navarrete and F. J. Ramirez, *Spectrochim. Acta*, 1995; 51A: 2347.

Date Received: June 10, 1998

Date Accepted: July 23, 1998